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W S . D . can be obtained through a sequence of conformal mappings [4] as
“’ 5 Coler) =20 K (ko) + 0e K (ko) (1)
: T Y o K'(kor) "K' (koo)
S R + it
B e d2 — a2)(c2 = b2
Pob kor = ( 2 az )(Cz 2) (2a)
. e h (2 —a?)(d?> = b?)
H C {
= d i i Foy — [sinh?(¢d) — sinh?(¢a)][sinh?((c) — sinh?(¢h)]
e ’ [sinh?(Ce) — sinh?(¢a)][sinh?(¢d) — sinh?(¢h)]
Fig. 1. Coplanar lines separated by a finite ground plane. (2b)
where( = 7 /2h, K(k), andK' (k) are the complete elliptic integral
. 0 ab ¢ d of the first kind and its complement. Similarly, the even mode is
| T —_— analyzed by placing a magnetic wall at the center of the structure.
! z-planc : & The even-mode capacitance per-unit-length is evaluated through a
0 R _c d sequence of transformations as depicted in Fig. 2. The upper region
on thet-domain is mapped onto the-domain through the mapping
“t
w :/ dt 3)
S UN A T oo =10 bk Lo o te V(E=ta)(t = 1) (t = te)(t ~ 1)
T — N _ and by the following equations:
_ .2 t-plane = sinh(rz,
t=7 t = sinh“(mtz/2h) W, _ I((kol) (4a)
H, I{I(k‘ol)
W, W, ro F(arcsin %,km) (4b)
— 1 Wi K (ko)
i P H -plane E i H . —b
:_“%_’ ] I w-plane ;Q_z“___i I Q _ F(arcsuu/ ji_ii-/kol) 40
N N Wi K (ko)
‘ ' Wo  K(kuo)
(a) (b) HZ - I(/(koz) (5a)
;[g. 2. _ Evekr)l-rrlqudlee cqpalcnance evaluation by conformal transformations. (a) F(.dl.csin\/Sinhz(Cﬂ)[Sinhz(ﬁd)*smhz(ﬁb)] : -))
ir region. (b) Dielectric layer. P _ SinhZ(¢h)[sinh2(Cd)—sinh2(Ca)] ? "v02 (5b)
Wo K(ko2)
: cosh2(¢a)[sinh2({d)—sinh2(¢b)] 4,
(SDM) [2], [3], and the conformal-mapping method (CMM) [4]. Q2 _ F(arcsm\/msh?(Zb)[sinhZ(Zd)—sinhZ(Ca)l’Im) (50)
Ideally, the spacing between CPW's should be large in order to Wy K(ko2)

avoid line-to-line coupling in circuits. However, in practice, the ) ] S ] )
ground-plane width (Fig. 1) should be as small as possible, sinégere F (¢, k) is the incomplete elliptic integral of the first kind,

it has a direct influence upon the actual circuit size. A compromi¥4itten in Jacobi's notation. Subsequently, the capacitance of the
between these two constraints can be suggested by a quantitartﬁféangmar s_tructure in the-domain can be _conS|dered as the sum
estimate of the coupling coefficient. Previous analyses [4], [5] of tff WO capacitances [6] and the total capacitance per-unit-length for
coupling effects between CPW pairs were primarily based on tHa€ even mode is, therefore, given by

assumption of infinite thick substrate. In this paper, the effect of the . S

conductor backing on the line-to-line coupling between CPW’s with a Celzr) = 20 Cp(Wi/Ha, PL/WA, Q1 /W)
finite ground-plane separation is examined. Closed-form expressions, + c0er Cp(Wa/Hy, P2 /W, Q2 /W2) (6)
accounting for the aforementioned effect, is derived based upon the

CMM. Numerical results produced by the SDM are also included fgyhere

comparison. Cola, B,7) = K (k1) /K (k1) + K(k3)/K' (k3) (7)
F[al-csin(]f1 /]{2), ]12] _ é (83)
Il. ANALYSIS .K(]"’Z) 6
The structure to be analyzed is shown in Fig. 1, where two CPW’s F[aI'CSII¥,(k3/k4)’ ka] _ 129 (8b)
are separated by a ground plane of widd All conductors are K (ka) 1-4
assumed to be infinitely thin and perfectly conducting. It is assumed K(k2) — ab (8¢c)
that the air-dielectric interfaces, where all the conductors are located, K'(k2)
can be dealt with as though perfect magnetic walls are present in K(ks) a(l = §) (8d)
them. The even- and odd-mode capacitances per-unit-length of the K'(k4)
structure can thus be considered as the sum of the capacitances in the b=(B+7)/2 ©)

air region and in the dielectric layer. The odd-mode capacitance is
evaluated by assuming an electric wall is present at the center of th&imple and accurate formulas are available [7] for solving (4), (5),
structure. Hence, the capacitance per-unit-length for the odd maaed (8). Hence, the odd- and even-mode characteristic impedances
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and coupling coefficient of the coupled CPW'’s may be evaluated by

the well-known expressions

Zo(o,e) = €0 [Core(e0)Coe (1) /7 (10)
Zo,c - Zo,o

wherec, is the velocity of light in vacuum.

Ill. NUMERICAL RESULTS AND DISCUSSIONS

Figs. 3-5 shows the even- and odd-mode characteristic impedance

and coupling coefficient values of coupled CPW£s = 12.9), eval-
uated by the proposed formulas, for different aspect ratibg0 =

0.2, 0.5, 0.9). In these examples, the signal conductors are placeg’]

midway between the upper ground planes (ke a« = d — ¢). For
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increases from 1 to 3. Furthermore, the coupling between CPW's is
higher for low impedance lines (d§/D approaches 1).

IV. CONCLUSION

It has been shown that the presence of the back-face metallization
is an influential factor on estimation of the coupling between par-
allel CPW's, especially for MMIC applications where unnecessary
crosstalk between conductors could be a serious problem. A closed-
form analytical solution has been devised for obtaining the quasi-
TEM parameters of coupled CPW lines. Numerical results generated
by the proposed method is in excellent agreement with those values
obtained by an SDM. These formulas are both accurate and easy to
implement, thus making it an excellent choice for use in computer-
aided design (CAD)-oriented tools.
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