

where

$$Z_{me}^{xx}(m, n) = \frac{-1}{4\pi NM} \sum_{k=1}^N \sum_{L=1}^M I_{m,n,k,L}^{xx} \quad (31)$$

$$I_{m,n,k,L}^{xx} = \int_{l_{n,k}^e} \int_{l_{m,L}^m} V(x_L, y, x', y_k) dy dx' \quad (32)$$

where N and M represent the number of Gaussian quadrature nodes on the magnetic and electric segments, respectively. x_L and y_k are the Gaussian quadrature nodes on the aperture and microstrip, respectively, and $l_{n,k}^e$ and $l_{m,L}^m$ are the lengths of the electric and magnetic segments, respectively. Also

$$V(x, y, x', y') = 2h \frac{(-jk_1 r_0 - 1)}{r_0^3} e^{-jk_1 r_0} \quad (33)$$

where

$$r_0 = \sqrt{(x - x')^2 + (y - y')^2 + h^2}. \quad (34)$$

On the other hand

$$Z_{me}^{zx}(m, n) = \frac{-1}{4\pi NM} \sum_{i=1}^{N_{zx}} a_i^{zx} \sum_{k=1}^N \sum_{L=1}^M I_{m,n,i,k,L}^{zx} \quad (35)$$

where N_{zx} and a_i^{zx} are, respectively, the number and amplitude of the complex images of $G_{A_{zx}}$. Thus

$$I_{m,n,i,k,L}^{zx} = \int_{l_{i,n,k}^e} \int_{l_{m,L}^m} V'(x_L, y, x', y_k) dy dx' \quad (36)$$

$V'(x, y, x', y')$ is shown in (37) at the bottom of the previous page, and

$$r_i = \sqrt{\rho^2 + (-jb_i^{zx})^2}. \quad (38)$$

ACKNOWLEDGMENT

The authors would like to thank the Communications research Centre in Ottawa, Ont., Canada for providing the experimental results of Fig. 6.

REFERENCES

- [1] W. Grabherr and W. Menzel, "A new transition from microstrip line to rectangular waveguide," in *Proc. of 22nd EuMC*, Espoo, Finland, 1992, pp. 1170-1175.
- [2] L. Hyvonen and A. Hujanen, "A compact MMIC-compatible microstrip to waveguide transition," in *IEEE MIT-S Dig.*, San Francisco, CA, June 1996, pp. 875-878.
- [3] N. Herscovici and D. Pozar, "Full-wave analysis of aperture-coupled microstrip lines," *IEEE Trans. Microwave Theory Tech.*, vol. 39, pp. 1108-1114, July 1991.
- [4] A. A. Omar and Y. L. Chow, "A solution of coplanar waveguide with air-bridges using complex images," *IEEE Trans. Microwave Theory Tech.*, vol. 40, pp. 2070-2077, Nov. 1992.
- [5] Y. L. Chow, J. J. Yang, D. G. Fang, and G. E. Howard, "A closed form spatial Green's functions for thick microstrip substrates," *IEEE Trans. Microwave Theory Tech.*, vol. 39, pp. 588-593, Mar. 1991.
- [6] K. Kunz and R. Luebbers, *The Finite Difference Time Domain Method for Electromagnetics*. Boca Raton, FL: CRC Press, 1993.
- [7] J. Cheng, N. I. Dib, and P. B. Katehi, "Theoretical modeling of cavity-backed patch antennas using a hybrid technique," *IEEE Trans. Microwave Theory Tech.*, vol. 43, pp. 1003-1013, Sept. 1995.
- [8] J. Yook, N. I. Dib, and P. B. Katehi, "Characterization of high frequency interconnects using finite difference time domain and finite element methods," *IEEE Trans. Microwave Theory Tech.*, vol. 42, pp. 1727-1736, Sept. 1994.

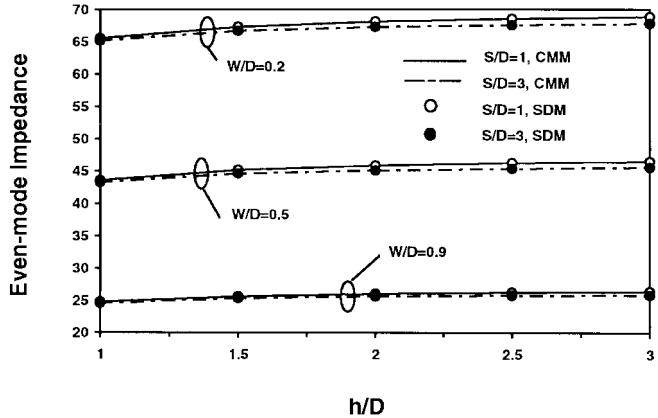
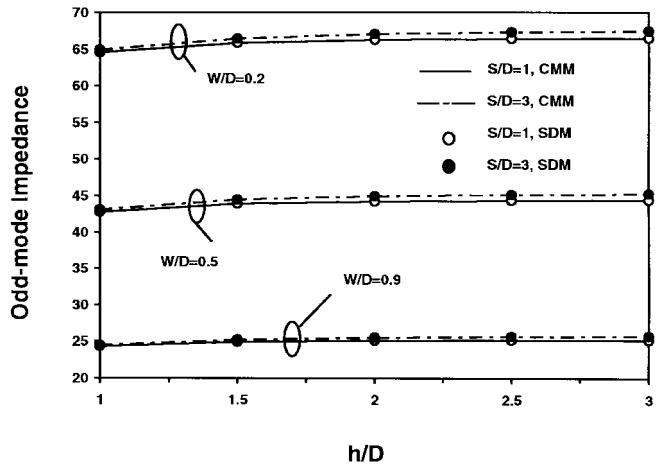
- [9] R. S. Elliott, *Antenna Theory and Design*. Englewood Cliffs, NJ: Prentice-Hall, 1981.
- [10] D. G. Fang, J. J. Yang, and K. Sha, "The exact images of a horizontal magnetic dipole above or within a microstrip substrate," in *Proc. Sino-Japanese Joint Meeting Optical Fiber Sci. and EM Theory*, Nanjing, China, 1987, pp. 693-698.
- [11] R. E. Collin, *Field Theory of Guided Waves*. New York: McGraw-Hill, 1991, pp. 23-26.
- [12] A. W. Glisson and D. R. Wilton, "Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces," *IEEE Trans. Antennas Propagat.*, vol. AP-29, pp. 593-603, Sept. 1980.
- [13] G. E. Howard, "Analysis of passive and active microwave integrated circuits by the field approach," M.A.Sc. thesis, Univ. Waterloo, Waterloo, Ont., Canada, 1988.
- [14] R. F. Harrington, *Field Computation by Moment Methods*. Malabar, FL: R. E. Krieger, 1968, pp. 62-81.
- [15] D. A. Huber, "A moment method analysis of stripline circuits through multi-pipe field modeling," M.A.Sc. thesis, Univ. Waterloo, Waterloo, Ont., Canada, 1991.
- [16] R. W. Hamming, *Numerical Methods for Scientists and Engineers*. New York: Dover, 1973, pp. 620-622.
- [17] A. A. Omar and Y. L. Chow, "Coplanar waveguide with top and bottom shields in place of air-bridges," *IEEE Trans. Microwave Theory Tech.*, vol. 41, pp. 1559-1563, Sept. 1993.

Effect of Conductor Backing on the Line-to-Line Coupling Between Parallel Coplanar Lines

Kwok-Keung M. Cheng

Abstract—A good estimate of the coupling effect between parallel coplanar waveguide (CPW) lines is important, especially for monolithic microwave integrated circuit (MMIC) applications where unnecessary crosstalk between conductors could be a serious problem. This paper shows how these coupling parameters may be analytically obtained in the presence of the back-face metallization. Closed-form formulas are developed for evaluating the quasi-TEM characteristic parameters based upon the conformal-mapping method (CMM). Very good agreement is observed between the values produced by these formulas and by a spectral-domain method (SDM).

Index Terms—Coplanar waveguide, coupled lines.



I. INTRODUCTION

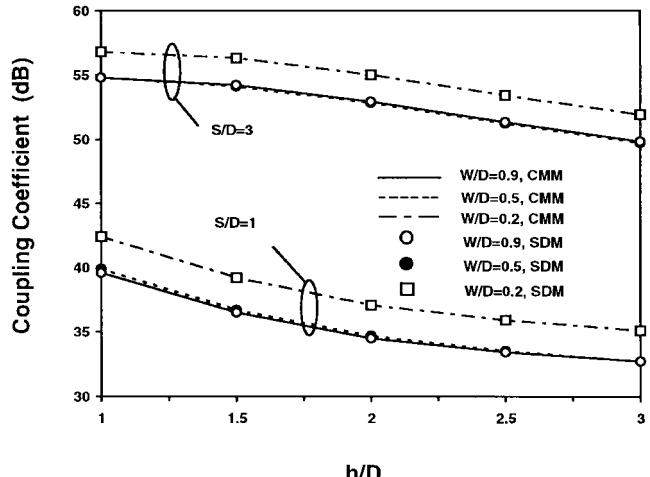
Coplanar waveguide is often considered to have free space above and below the dielectric substrate. However, this configuration has been found unsuitable for monolithic microwave integrated circuits (MMIC's), where the substrate is typically thin and fragile. Practical realizations of coplanar waveguides (CPW's) usually have an additional ground plane beneath the substrate. The main advantages of this back-face metallization are principally to increase the mechanical strength as well as to improve heat dissipation. The standard CPW, plus this additional conducting ground plane, is often called conductor-backed CPW (CBCPW). Various approaches have been reported on the characterization of coplanar transmission lines such as the finite-difference method [1], the spectral-domain method

Manuscript received July 7, 1996; revised March 24, 1997.

The author is with the Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.
Publisher Item Identifier S 0018-9480(97)04466-9.

Fig. 3. Even-mode impedance values versus h/D and S/D .Fig. 4. Odd-mode impedance values versus h/D and S/D .

and coupling coefficient of the coupled CPW's may be evaluated by the well-known expressions


$$Z_{o(e)} = c_v^{-1} [C_{o,e}(\varepsilon_r) C_{o,e}(1)]^{-1/2} \quad (10)$$

$$C = -20 \log \left(\frac{Z_{o,e} - Z_{o,o}}{Z_{o,e} + Z_{o,o}} \right) \quad (11)$$

where c_v is the velocity of light in vacuum.

III. NUMERICAL RESULTS AND DISCUSSIONS

Figs. 3–5 shows the even- and odd-mode characteristic impedance and coupling coefficient values of coupled CPW's ($\varepsilon_r = 12.9$), evaluated by the proposed formulas, for different aspect ratios ($W/D = 0.2, 0.5, 0.9$). In these examples, the signal conductors are placed midway between the upper ground planes (i.e., $b - a = d - c$). For purposes of comparison, the result for the same structure calculated by the SDM [8] are also included in Figs. 3–5. For the SDM used here, the potential functions in the slots are divided into N subsections. N is chosen by increasing the number of subsections until the resulting impedance value does not vary by more than 0.1%. Note that the discrepancies between the values obtained by the two approaches are small (less than 1% error in impedance levels and 0.3 dB in coupling coefficient calculated). It can also be observed that the even- and odd-mode characteristic impedances increase gradually with increasing value of h/D . However, the coupling coefficient is a strong function of both the ratios S/D and h/D , as expected. For instance the coefficient drops by almost 7 dB ($S/D = 1$) when the ratio h/D

Fig. 5. Coupling coefficient versus h/D and S/D .

increases from 1 to 3. Furthermore, the coupling between CPW's is higher for low impedance lines (as W/D approaches 1).

IV. CONCLUSION

It has been shown that the presence of the back-face metallization is an influential factor on estimation of the coupling between parallel CPW's, especially for MMIC applications where unnecessary crosstalk between conductors could be a serious problem. A closed-form analytical solution has been devised for obtaining the quasi-TEM parameters of coupled CPW lines. Numerical results generated by the proposed method is in excellent agreement with those values obtained by an SDM. These formulas are both accurate and easy to implement, thus making it an excellent choice for use in computer-aided design (CAD)-oriented tools.

REFERENCES

- [1] T. Hatsuda, "Computation of coplanar-type strip-line characteristics by relaxation method and its application to microwave circuits," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-23, pp. 795–802, Oct. 1975.
- [2] Y. C. Shih and T. Itoh, "Analysis of conductor-backed coplanar waveguide," *Electron. Lett.*, vol. 18, no. 12, pp. 538–539, June 1982.
- [3] R. Boix and M. Horne, "Modal quasi-static parameters for coplanar multiconductor structures in multilayered substrates with arbitrary transverse dielectric anisotropy," *Proc. Inst. Elect. Eng.*, pt. H, vol. 136, no. 1, pp. 76–79, Feb. 1989.
- [4] G. Ghione and C. Naldi, "Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite-extent ground planes, and line-to-line coupling," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-35, pp. 260–267, Mar. 1987.
- [5] N. H. Zhu, W. Qiu, E. Y. B. Pun, and P. S. Chung, "Analysis of a coupled coplanar waveguide for MMIC applications," *Microwave Opt. Technol. Lett.*, vol. 10, no. 3, pp. 182–186, Oct. 1995.
- [6] K. K. M. Cheng, "Analysis and synthesis of coplanar coupled lines on substrates of finite thickness," *IEEE Trans. Microwave Theory Tech.*, vol. 44, pp. 636–639, Apr. 1996.
- [7] K. K. M. Cheng and I. D. Robertson, "Quasi-TEM study of microshield lines with practical cavity sidewall profiles," *IEEE Trans. Microwave Theory Tech.*, vol. 43, pp. 2689–2694, Dec. 1995.
- [8] K. K. M. Cheng and J. K. A. Everard, "A new technique for the quasi-TEM analysis of conductor-backed coplanar waveguide structures," *IEEE Trans. Microwave Theory Tech.*, vol. 41, pp. 1589–1592, Sept. 1993.