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whereN andM represent the number of Gaussian quadrature nodes
on the magnetic and electric segments, respectively.xL and yk
are the Gaussian quadrature nodes on the aperture and microstrip,
respectively, andlen;k and lmm;L are the lengths of the electric and
magnetic segments, respectively. Also
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whereNzx andazxi are, respectively, the number and amplitude of
the complex images ofGA . Thus
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V 0(x; y; x0; y0) is shown in (37) at the bottom of the previous page,
and

ri = �2 + �jbzxi
2

: (38)
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Effect of Conductor Backing on the Line-to-Line
Coupling Between Parallel Coplanar Lines

Kwok-Keung M. Cheng

Abstract—A good estimate of the coupling effect between parallel
coplanar waveguide (CPW) lines is important, especially for monolithic
microwave integrated circuit (MMIC) applications where unnecessary
crosstalk between conductors could be a serious problem. This paper
shows how these coupling parameters may be analytically obtained in
the presence of the back-face metallization. Closed-form formulas are
developed for evaluating the quasi-TEM characteristic parameters based
upon the conformal-mapping method (CMM). Very good agreement is
observed between the values produced by these formulas and by a
spectral-domain method (SDM).

Index Terms—Coplanar waveguide, coupled lines.

I. INTRODUCTION

Coplanar waveguide is often considered to have free space above
and below the dielectric substrate. However, this configuration has
been found unsuitable for monolithic microwave integrated circuits
(MMIC’s), where the substrate is typically thin and fragile. Prac-
tical realizations of coplanar waveguides (CPW’s) usually have an
additional ground plane beneath the substrate. The main advan-
tages of this back-face metallization are principally to increase the
mechanical strength as well as to improve heat dissipation. The
standard CPW, plus this additional conducting ground plane, is often
called conductor-backed CPW (CBCPW). Various approaches have
been reported on the characterization of coplanar transmission lines
such as the finite-difference method [1], the spectral-domain method
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Fig. 1. Coplanar lines separated by a finite ground plane.

(a) (b)

Fig. 2. Even-mode capacitance evaluation by conformal transformations. (a)
Air region. (b) Dielectric layer.

(SDM) [2], [3], and the conformal-mapping method (CMM) [4].
Ideally, the spacing between CPW’s should be large in order to
avoid line-to-line coupling in circuits. However, in practice, the
ground-plane width (Fig. 1) should be as small as possible, since
it has a direct influence upon the actual circuit size. A compromise
between these two constraints can be suggested by a quantitative
estimate of the coupling coefficient. Previous analyses [4], [5] of the
coupling effects between CPW pairs were primarily based on the
assumption of infinite thick substrate. In this paper, the effect of the
conductor backing on the line-to-line coupling between CPW’s with a
finite ground-plane separation is examined. Closed-form expressions,
accounting for the aforementioned effect, is derived based upon the
CMM. Numerical results produced by the SDM are also included for
comparison.

II. A NALYSIS

The structure to be analyzed is shown in Fig. 1, where two CPW’s
are separated by a ground plane of width2a. All conductors are
assumed to be infinitely thin and perfectly conducting. It is assumed
that the air-dielectric interfaces, where all the conductors are located,
can be dealt with as though perfect magnetic walls are present in
them. The even- and odd-mode capacitances per-unit-length of the
structure can thus be considered as the sum of the capacitances in the
air region and in the dielectric layer. The odd-mode capacitance is
evaluated by assuming an electric wall is present at the center of the
structure. Hence, the capacitance per-unit-length for the odd mode

can be obtained through a sequence of conformal mappings [4] as
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where� = �=2h, K(k), andK 0
(k) are the complete elliptic integral

of the first kind and its complement. Similarly, the even mode is
analyzed by placing a magnetic wall at the center of the structure.
The even-mode capacitance per-unit-length is evaluated through a
sequence of transformations as depicted in Fig. 2. The upper region
on thet-domain is mapped onto thew-domain through the mapping
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whereF (�; k) is the incomplete elliptic integral of the first kind,
written in Jacobi’s notation. Subsequently, the capacitance of the
rectangular structure in thew-domain can be considered as the sum
of two capacitances [6] and the total capacitance per-unit-length for
the even mode is, therefore, given by

Ce("r) = "0Cp(W1=H1; P1=W1; Q1=W1)
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Simple and accurate formulas are available [7] for solving (4), (5),
and (8). Hence, the odd- and even-mode characteristic impedances
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Fig. 3. Even-mode impedance values versush=D andS=D.

Fig. 4. Odd-mode impedance values versush=D andS=D.

and coupling coefficient of the coupled CPW’s may be evaluated by
the well-known expressions

Zo(o;e) = c
�1
v [Co;e("r)Co;e(1)]

�1=2 (10)

C = �20 log
Zo;e � Zo;o

Zo;e + Zo;o
(11)

wherecv is the velocity of light in vacuum.

III. N UMERICAL RESULTS AND DISCUSSIONS

Figs. 3–5 shows the even- and odd-mode characteristic impedance
and coupling coefficient values of coupled CPW’s("r = 12:9), eval-
uated by the proposed formulas, for different aspect ratios (W=D =

0:2, 0:5, 0:9). In these examples, the signal conductors are placed
midway between the upper ground planes (i.e.,b� a = d� c). For
purposes of comparison, the result for the same structure calculated by
the SDM [8] are also included in Figs. 3–5. For the SDM used here,
the potential functions in the slots are divided intoN subsections.N
is chosen by increasing the number of subsections until the resulting
impedance value does not vary by more than 0.1%. Note that the
discrepancies between the values obtained by the two approaches are
small (less than 1% error in impedance levels and 0.3 dB in coupling
coefficient calculated). It can also be observed that the even- and odd-
mode characteristic impedances increase gradually with increasing
value ofh=D. However, the coupling coefficient is a strong function
of both the ratiosS=D and h=D, as expected. For instance the
coefficient drops by almost 7 dB (S=D = 1) when the ratioh=D

Fig. 5. Coupling coefficient versush=D andS=D.

increases from 1 to 3. Furthermore, the coupling between CPW’s is
higher for low impedance lines (asW=D approaches 1).

IV. CONCLUSION

It has been shown that the presence of the back-face metallization
is an influential factor on estimation of the coupling between par-
allel CPW’s, especially for MMIC applications where unnecessary
crosstalk between conductors could be a serious problem. A closed-
form analytical solution has been devised for obtaining the quasi-
TEM parameters of coupled CPW lines. Numerical results generated
by the proposed method is in excellent agreement with those values
obtained by an SDM. These formulas are both accurate and easy to
implement, thus making it an excellent choice for use in computer-
aided design (CAD)-oriented tools.
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